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Abstract
The reconstruction of high-quality 3D clothed humans frommonocular images or videos has gained popularity in recent years
due to its significant practical applications. While several surveys have addressed the reconstruction of full-body parametric
human models from images or videos, this survey specifically delves into the challenges and methodologies of reconstructing
3D clothed humans. It covers both pose-dependent and dynamic approaches to clothed human reconstruction. Regarding
pose-dependent clothed human reconstruction from monocular images, we investigate methodologies that employ regression
models trained on high-quality 3D scans to estimate human geometry with clothing. Additionally, we explore research
leveraging texture priors within large-scale diffusion models to enhance the inference of human appearance in occluded or
unseen areas. In terms of dynamic clothed human reconstruction from monocular and sparse multi-view videos, we analyze
human modeling techniques utilizing neural radiance fields and 3D Gaussian representations, which employ deformation
fields to capture human movements across frames. Furthermore, we provide an overview of the datasets and commonly used
quantitative evaluation metrics in these studies. Finally, we conclude by discussing open issues and proposing future research
directions in the realistic reconstruction of clothed humans, emphasizing areas that warrant additional investigation.

Keywords Clothed human reconstruction · NeRF · 3D Gaussian splatting · SMPL

1 Introduction

The field of 3D computer vision and computer graphics has
long recognized the importance of research efforts in 3D
human reconstruction. 3D human reconstruction aims to esti-
mate the geometry and appearance of humans. This area of
study has considerable applications across various domains
such as virtual reality/augmented reality (VR/AR) [1], online
meetings [2], virtual fitting [3], and gaming [4]. However,
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generating high-fidelity 3D human models typically requires
complex multi-view systems, time-consuming offline pro-
cessing, or manual design using software tools [5, 6]. These
methods often pose challenges, particularly for individuals
lacking specialized expertise, thereby rendering the process
cost-prohibitive. In recent years, researchers have increas-
ingly turned to data-driven and deep learning approaches to
enhance various types of clothed human representations [7–
11], making the creation of 3D clothed human models more
accessible for widespread application.

Photorealistic reconstruction of clothed humans from
monocular images and videos presents numerous challenges,
primarily due to the complexity of humanposes and the diver-
sity of clothing in real-world scenarios. Firstly, varied human
representations involve different degrees of compromise con-
cerning storage capacity, expressiveness, manipulability, and
compatibility with existing tools. For instance, parametric
human models excel at efficiently representing the human
body in diverse poses and shapes, providing a high level of
operational flexibility [12, 13]. However, they often lack the
capability to accurately depict surface details of the human
body and the various clothing styles worn on it [14, 15].
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Fig. 1 Representative works on clothed human reconstruction from monocular images or videos over time. Blue text indicates studies focusing on
monocular images, orange text denotes studies using video, and red text highlights research on 3D representation

Secondly, models trained on a restricted set of 3D human
scans frequently display incomplete geometric surfaces and
discontinuities in the reconstructed body parts and cloth-
ing, particularly when inferring human shapes with complex
poses and voluminous garments. This issue primarily stems
from the overfitting of trained models to the particular dis-
tributions of human poses and clothing found within the
training set of 3D scans [7–9, 16]. Lastly, achieving dynamic
reconstruction of clothed humans for a specific subject not
only demands consistent representation across various poses
in the video but also necessitates the reconstruction of human
motion. Typically, this motion reconstruction involves mod-
eling deformation fields learned from videos, which rely on
linear blend skinning (LBS) transformations of the skeletal
structure [10, 11]. However, accurately reconstructing non-
rigid deformations, like clothing, is often challenging and
prone to producing artifacts.

1.1 Scope

In this survey, we concentrate on the reconstruction of
high-quality 3D clothed humans from monocular images
and videos. Figure1 outlines the timeline of two grouped
approaches: clothed human reconstruction from images and
clothed human reconstruction from videos. Note that this
survey excludes research focusing on the reconstruction of
specific human body parts, such as hands [17–19] and head
avatar [20–22], as well as human parametric model esti-
mation [13, 23, 24], and traditional reconstruction methods
using multi-view sensor camera systems [5, 6]. Similarly,
research on 3D human reconstruction involving depth infor-
mation inputs [25, 26] will not be discussed.

Related survey Prior to our investigation, several surveys
have explored the reconstruction of 3D humans from images
or videos [27–29]. Tian et al. [27] provide an overview of
research on estimating human shape and pose from monoc-
ular images. Sun et al. [29] present a concise overview of
prevalent implicit neural representation techniques employed
in reconstructing human bodies, hands, and heads. Chen et
al. [28] provide a brief overview of traditional reconstruction
pipelines, regression-based models, and optimization-based
methods for realistic clothed human reconstruction. In con-
trast, our survey focuses specifically on methodologies for
reconstructing 3D clothed humans from monocular images
and videos in practical scenarios.We explore a broader range
of human representation techniques, including deformable
meshes and dual depth maps, which are not covered by Chen
et al. [28]. Additionally, we cover recent advancements in
computer vision relevant to human reconstruction, such as
leveraging diffusion model priors and exploring 3D Gaus-
sian representations. Our review also includes an analysis
of datasets and quantitative evaluation metrics essential for
training and assessing these reconstruction techniques.

1.2 Organization

In Sect. 2, we discuss conventional explicit and implicit rep-
resentations of 3D humans. Section3 focuses on clothed
human reconstruction from images, employing regression
models trained on 3D human scans and texture inference
in unobserved regions using diffusion priors. In Sect. 4, we
investigate dynamic human reconstruction from monocu-
lar videos using NeRF and 3D Gaussian representations.
Additionally, this survey offers insights into commonly used
datasets for training and evaluation, accompanied by a dis-
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Fig. 2 Example of a point cloud
representation of a human

cussion of quantitative evaluation metrics in Sect. 5. Lastly,
Sect. 6 summaries this survey anddiscusses several directions
deserving further exploration in the field of clothed human
reconstruction.

2 Human representations

Current methods of 3D human representation are primar-
ily categorized into explicit and implicit representations.
Explicit representations directly encode geometric informa-
tion about the human body and include techniques such as
point clouds [30, 31], meshes [32, 33], the SMPL model
[12], voxels [34, 35], depth maps [36, 37], and 3D Gaussians
[38]. Implicit representations encode geometry indirectly by
using functions that describe the spatial relationship to the
surface. These methods determine whether points are inside
or outside the surface, or how far they are from it, through
representations such as signed distance functions (SDF) [39]
and occupancy fields [40]. Additionally, methods like NeRF
[41] use neural networks to implicitly encode both geometry
and texture. These advancements enhance the accuracy and
fidelity of human modeling, addressing various challenges
in capturing and rendering complex human forms.

2.1 Explicit representations

Point clouds A point cloud is a collection of points defined
by Cartesian coordinates in Euclidean space [42]. In addi-
tion to spatial position coordinates, each point may possess
supplementary attributes, such as normal vectors or color for
surfaces, as well as opacity or density for volumes (Fig. 2). A
point endowed with shape and shading attributes is typically
referred to as a surface element or surfel, which approximates
a patch of the surface [43]. SCALE [30] and Ma et al. [31]
use point cloud representations to explore the modeling and
animation of clothed humans.

Mesh A mesh is a common representation of an object’s
surface, defined by vertices and faces that determine the con-

Fig. 3 Example of a mesh
representation of a human. The
mesh is from the THuman2.0
Dataset [25]

nectivity of these vertices (Fig. 3). To texture a mesh, the UV
texturemap iswidely used. This technique involves “unwrap-
ping” the 3D surface of themesh onto a 2D plane, where each
vertex is mapped to a corresponding point on the 2D texture
image. Parametric human models [12, 44–46] are particu-
larly popular for representing human body meshes and are
extensively utilized in studies of human shape and pose esti-
mation.

SMPL The SMPL model [12] is a skinned vertex-based
representation of the human body shape and pose, devel-
oped from a large dataset of 3D human scans (Fig. 4). It
decomposes body shape into two distinct blend shapes: an
identity-dependent blend shape and a pose-dependent blend
shape. The blend shape is represented as a vertex offset vector
corresponding to the template mesh. A standard blend skin-
ning function is applied to the corrective template mesh to
obtain the deformed vertices. The SMPL model M(β, θ;�)

can be described as follows:

M(β, θ;�) = W (TP(β, θ), J (β), θ,W) (1)

TP(β, θ) = T̄ + BS(β) + BP(θ) (2)

� = {
T̄,W,S,J ,P}

(3)

where � represents the parameters of the SMPL model, T̄
denotes the positions of the template mesh vertices in the
zero pose and TP(β, θ) represents the positions of each ver-
tex in the mesh after incorporating shape and pose offsets.
BS(β) and BP(θ) correspond to the shape blend shape and
pose blend shape, which are vectors of vertices represent-
ing offsets from the template. β and θ correspond to linear
coefficients representing different body shapes and poses,
respectively.S andP represent the orthogonal principal com-
ponents of the shape and pose offsets, respectively. J (β)

denotes a function used to calculate the positions of the body
joints, based on shape. J represents a matrix that transforms
rest vertices into rest joints.W represents a set of blend skin-
ning weights, and W denotes the standard blend skinning
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Fig. 4 Example of a SMPL model [12]

function, with linear blend skinning being the most com-
monly used.

The SMPL model is compatible with existing render-
ing engines and has been employed in numerous studies
investigating human-centric vision, including shape and pose
estimation [13, 23, 24], human surface reconstruction [9,
16, 47], and generation [48–54]. Subsequently, FLAME [55]
developed a parametric model of the face, whileMANO [56]
defined a hand model. SMPL-X [57] extended this approach
to jointlymodel the human body, face, and hands. The SMPL
model, derived fromminimal clothing 3Dscans, cannot accu-
rately represent garments on the human body. Extending
this parametric representation to encompass clothed humans
involves introducing a vertex offset term [58–60], or gar-
ments layer [33, 61–65].

Voxel Similar to pixels in 2D images, voxels are the funda-
mental units for representing 3D objects [42]. In voxel-based
modeling for clothed human reconstruction, spatial informa-
tion is represented using cubic grids. Various studies have
explored 3D voxel representations [34, 35, 66] and proba-
bilistic visual hulls [67] to model human body shapes.

Depth mapsDepth maps represent the distance from a cam-
era to the surface of objects in a scene, with each pixel
indicating a specific depth value. Dual depth maps use two
separate depth maps, one for the front surface and one for
the back surface, to capture the full 3D structure of an object,
such as a human body. By combining thesemaps, the object’s
3Dgeometry canbe approximated. For instance, several stud-
ies have explored reconstructing clothed humans using dual
depth maps [36, 37].

Fig. 5 Visualization of the 3D
Gaussians [38] multi-view
reconstruction results of the
DNA-rendering dataset [91]
using the SIBR tool [92]

3D Gaussians In previous research on human performance
capture, 3D Gaussians have been employed for modeling the
human body. This approach has been employed in various
studies, such as those by Stoll et al. [68] and Robertini et
al. [69]. The 3D Gaussian representation models the human
body volumetrically and is typically associated with a kine-
matic skeletal model. Unlike the 3D Gaussians used in 3D
scene modeling, those used for human performance capture
are often fixed in number and relatively low in quantity. The
optimization of mean and covariance is achieved through the
similarity between projected 3D Gaussians and 2D image
Gaussians.

The model presented in Kerbl et al. [38] employs a set of
discrete 3D Gaussians, which can be rendered to an image
using an efficient rasterization algorithm. This representation
is similar to point clouds and is referred to as “splatting” in
the rendering process (Fig. 5). Each 3D Gaussian possesses
several learnable attributes and can be described as follows:

G = (μ,�, α,C) (4)

� = RSSTRT (5)

The position of the Gaussian center is denoted by μ, while
the covariance matrix� is decomposed into a scaling matrix
S and a rotationmatrixR. The scalingmatrix S is represented
as a 3D vector s, while the rotation matrix R is represented
as a quaternion q. The opacity value is represented by α, and
directional color C is represented via spherical harmonics
(SH).

3D Gaussian splatting, as a more memory-efficient rep-
resentation with faster training and inference speeds, has
widespread applications [70–72] in general dynamic scene
modeling [73–76], object surface extraction [77–79], 3D
object generation [80–82], and clothed human reconstruc-
tion [83–88] and generation [89, 90].
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Fig. 6 Illustrative explanations of occupancy fields and SDF

2.2 Implicit representations

Occupancy fields and SDF Occupancy fields represent a
3D object by predicting whether a given point in space is
inside or outside the object. This is done by assigning an
occupancy value to each point, typically ranging between 0
and 1. SDF represent 3D surfaces by predicting the shortest
distance from any point in space to the object’s surface. The
distance is signed, meaning it has a positive value if the point
is outside the object, a negative value if the point is inside,
and zero if the point is exactly on the surface. The occupancy
value and SDF value of query points in space can be com-
puted using neural networks, allowing for the representation
of intricate surface details of objects [34, 39]. The classic
marching cubes algorithm [93] can be employed to extract
meshes from occupancy fields and SDF (Fig. 6). Occupancy
fields and SDF have extensive applications in the reconstruc-
tion of clothed human from from single images [7, 8, 94–96].

NeRF The NeRF [41] stands out as a prominent implicit vol-
ume representation of scenes. It characterizes a static scene
using a continuous 5D function that furnishes volume den-
sity and directional emitted radiance at any spatial point. This
function is approximated by a multilayer perceptron (MLP),
which predicts volume density and view-dependent RGB
color conditioned on a 5D coordinate input (x, y, z, θ, φ).
Formally, the static scene can be defined as:

F� : (γ (x), γ (d)) �→ (c, σ ) (6)

Here, F represents the NeRF, and � denotes its parameters.
x represents the spatial coordinates of the query point, and
d denotes the direction of the query point. γ (·) is the posi-
tion encoding function. c represents the emitted color, and
σ represents the volume density. NeRF, as a highly efficient
and flexible 3D representation, has been widely applied in
the reconstruction [97, 98] and generation [48, 49] of 3D
clothed humans.

2.3 Advantages and limitations

The various 3D human representation methods each have
their ownadvantages anddisadvantages concerning intuitive-
ness, expressive power, storage, and computation. Choosing
the most suitable method often involves balancing trade-offs
between speed and accuracy based on specific requirements.
Point clouds and voxels are more intuitive but may require
higher storage for detailed representations. Meshes provide
a clear topological structure, making them suitable for repre-
senting complex structures and widely applicable. However,
they can require high resolution and lead to higher storage
costs. SMPLmodels are efficient and flexible for human rep-
resentation but cannot capture detailed surface features, such
as clothing. 3D Gaussians offer faster reconstruction and
better rendering quality but may face challenges in extract-
ing high-quality geometric surfaces. Implicit representations,
such as occupancy fields, SDF, and NeRF, offer greater
expressive power and flexibility. However, they often require
dense sampling, which results in higher computational costs.

3 Clothed human reconstruction from
images

The pipeline for reconstructing clothed humans frommonoc-
ular images input, as illustrated in Fig. 7, consists of three
primary stages: (1) extracting feature from the input image;
(2) predicting the geometry and texture of the clothed human;
(3) computing loss using ground-truth data from 3D scans of
clothed humans to optimize the model parameters. Table1
summarizes extracted features, reconstruction output, and
loss functions in these approaches. The reconstruction pro-
cess is formulated as follows:

F(E2D, E3D, Eo, x) �→ s (7)

Here, E denotes the feature extractor responsible for deriv-
ing information on human geometry and appearance from the
image. x usually represents the query points or vertices in the
SMPLmodel. Specifically, E2D represents the 2D features of
the human in the image, while E3D pertains to the spatial fea-
tures associated with human geometry. Eo denotes additional
feature information. The function F encapsulates the mod-
eling of geometry and appearance of clothed humans based
on these extracted features. The variable s represents the
estimated geometry and predicted appearance. Section3.1
discusses the geometric reconstruction of clothed human
under different 3D representations, while Sect. 3.2 focuses
on the estimation of the textures for the reconstructed human.
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Fig. 7 An illustrative framework outlines the reconstruction of clothed
humans from images. The process is divided into three primary com-
ponents: feature extraction, reconstruction output, and optimization.
Initially, the feature extractor encodes crucial information to depict the
geometry and appearance of humans, including image features, spatial
features, and textual descriptions. Subsequently, the decoder predicts

diverse 3D representations of clothed humans conditioned on these
features extracted from the image. The reconstruction outputs con-
sist of geometry and appearance branches. Various loss functions are
defined based on 3D ground-truth scan data, and regularization terms
are employed to optimize and constrainmodel training. The input image
and UV texture image source from the People-Snapshot dataset [99]

3.1 Geometry

SMPL models with clothing offsets The SMPL model
inherently characterizes humans in minimal attire across
diverse shapes and poses, thus limiting its capacity to
delineate intricate geometry details inherent in complex
clothing. Extending this parametric representation to encom-
pass clothed humans involves introducing a vertex offset
term [58–60], or garments layer [61–65]. Alldieck et al.
[15] propose Tex2Shape, which employs a strategy entail-
ing the prediction of normal maps and vertex displacement
maps, both contingent upon a partialUV texturemap, thereby
facilitating the refinement of fine geometry details in human
models. The methodology commences by generating a par-
tialUV texturemapderived froma single human input image,
subsequently completing it by inpainting with the full nor-
malmap and vertex displacementmap, utilizing a pixel2pixel
network [109]. The ground-truth full UV maps are rendered
from 3D human scans. Additionally, Lazova et al. [59] pro-
pose a technique for modeling clothed humans via predicted
vertex displacement maps, conditioned on estimated partial
segmentation, culminating in the generation of a complete
UV texturemap from the partial texture. Bhatnagar et al. [61]
introduce multi-garment network (MGN), which delineates
several garment templates as supplementary offset terms of
the SMPLmodel, prognosticating both the separable garment
templates and underlying human shapes in input images. The

inference model is trained with 3D vertex loss and 2D seg-
mentation loss. Corona et al. [64] propose SMPLicit, which
harnesses a generative model to forecast the clothing layer
atop the human body, conditioned on a set of latent variables
encapsulating the garment’s cut and style. This model opti-
mizes the fit of each garment to the image by minimizing
a loss function between the detected garment’s pose and its
projected points on the semantic segmentation map. Moon
et al. [110] devise two regressors to estimate body shape
and pose, cloth existence score, and latent code, advocat-
ing a densepose-based loss function amalgamating clothing
segmentations and densepose to ensure alignment of the esti-
mated clothing layerwith the clothing segmentations (Fig. 8).
Zhu et al. [101] register predefined categorized garment tem-
plates to the human in the image based on the estimated
clothing human shape, boundary, and clothing semantics.

Voxels Varol et al. [34] and similarly, Zheng et al. [35]
endeavor to construct reconstructed clothed human using
explicit occupancy voxel volumes. Varol et al. [34] pro-
pose BodyNet, a volumetric representation of human shape
based on fixed-resolution voxel grids (Fig. 9). BodyNet is
trained to estimate 3D human shapes directly from single
images by minimizing the binary cross-entropy loss between
ground-truth and predicted occupancy values for each grid
cell. Similarly, Zheng et al. [35] introduce DeepHuman,
which constructs a semantic volume by leveraging the SMPL
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Fig. 8 Examples of clothed human reconstruction based on SMPL
model with offsets. The reconstruction results source from Moon et
al. [110]

Fig. 9 Examples of clothed human reconstruction based on voxels. The
reconstruction results source from BodyNet [34]

model derived from input images and integrating multi-scale
image features through volumetric feature transformation.
This occupancy volume is further refined using a normal
refinement model that enhances the geometric details of the
reconstructed human body.

Dual depth maps Gabeur et al. [111] delineate method-
ologies for estimating visible and hidden depth maps from
a single input image. Subsequently, full-body 3D point
clouds are derived from these two depth maps, akin to
aligning two halves of a mold. The surface mesh is sub-
sequently obtained through Poisson surface reconstruction
[112]. ECON [16] approximates front and back partial sur-
faces via depth-aware silhouette-consistent bilateral normal
integration (d-BiNI) optimization [102] (Fig. 10). Guided
by clothed human normal maps proposed in ICON [9] and
body depth maps rendered from estimated SMPL models,
this method employs SMPL-X [57] guided IF-Nets [113] to
inpaint missing geometry of partial surfaces, thereby obtain-
ing sided and occluded triangles. The final watertight mesh
is synthesized via screened Poisson reconstruction [114],
amalgamating the two d-BiNI surfaces, inpainted surfaces,
and faces or hands cropped from the estimated SMPL-X
model. 2K2K [103] initially prognosticates low-resolution
depth maps, delineating the global structure of the human,

Fig. 10 Examples of clothed human reconstruction based on dual depth
maps. The reconstruction results source from ECON [16]

Fig. 11 Examples of clothed
human reconstruction based on
deformable meshes. The
reconstruction results source
from TeCH [50]

alongside high-resolution normal maps representing finer
details. These high-resolution maps are conditioned on the
normal maps. The proposed methodology involves a part-
wise image-to-normal network, predicting the front and back
normals of the human subject within the image based on the
subject’s joints. The final mesh is crafted from the predicted
high-resolution depth maps using screened Poisson surface
reconstruction [114].

Deformable meshes Recently, DefTet [115] and DMTet
[116] have proposed the use of deformable tetrahedron
meshes for object shape reconstruction. These approaches
offer enhanced flexibility in modeling complex geometries,
representing a significant advancement inmesh-based recon-
struction techniques. These studies integrate the DMTet
representation with diffusion models [117–119], optimizing
the reconstructedDMTet representation of the clothed human
through score distillation sampling (SDS) loss [107].

TeCH [50] adopts a hybrid 3D representation based on
DMTet [116] and refines it via multi-view score distillation
sampling loss and reconstruction loss (Fig. 11). The diffu-
sion model, a personalized fine-tuned text-to-image model
[119], is employed to model certain indescribable appear-
ances conditioned on descriptive text prompts generated by
the BLIP model [120]. Puzzleavatar [121] reconstructs the
shape and appearance of the human in an image collection
by composing multiple assets into a T-posed, textured tetra-
hedral body mesh via score distillation sampling. Multiple
human-related assets, such as garments, accessories, faces,
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andhair, are decomposed froman image collection,with each
asset linked to unique learned tokens by a personalized T2I
model, PuzzleBooth. ConTex-Human [122] firstly leverages
view-aware 2D diffusionmodel Zero-1-to-3 [123] to perform
score distillation sampling for optimizing a human NeRF.
The NeRF representation of the human is then converted
into a DMTet mesh and further optimized using front and
back normal maps, estimated during the back-view synthe-
sis stage, through a visibility-aware patch consistency loss.

Occupancy fields and SDF PIFu [7] constructs a 3D occu-
pancy field using pixel-aligned features from a single image
to predict occupancy probability at sample points, enabling
human surface and texture generation frommonocular input.
GeoPIFu [124] introduces latent voxel features derived from
an input image, augmented by a 3D U-Net incorporation,
serving as supplementary input for the implicit surface
function to alleviate geometry ambiguities associated with
query points. PIFuHD [8] with a coarse-to-fine framework
to achieve high-resolution 3D reconstructions (Fig. 12). The
coarse stage generates a 3D geometry embedding from a
downsampled input image and normalmaps, while an image-
to-image module [125] predicts front and back normals,
improving the reconstruction of geometric details. PaMIR
[47] voxelizes the estimated SMPL model and employs a
3D encoder to extract voxel-aligned features. Furthermore, a
depth-ambiguity-aware reconstruction loss rectifies discrep-
ancies between the predicted model and ground-truth along
the z-axis.

ICON [9] leverages the SMPL model to guide normal
map estimation for both the human body and clothing, using
local features derived from the cloth-body normal map and
SMPL model to regress the clothed human surface. D-IF
[126] builds on ICON by extracting 7D local features and
predicting the distance distribution between points and the
surface, combining sampled occupancy with residual off-
sets calculated by an MLP. Cao et al. [127] introduce the
self-evolved signed distance field (SeSDF) module, which
refines SDF from the SMPL-X model using pixel-aligned
features, 3D features from SMPL-X, and distance encoding
to enhance clothed human model accuracy. Song et al. [128]
proposeDIFu,whichgenerates a back-side imageusing ahal-
lucinator, constructs depth volumes from dual depth maps,
and combines voxel-aligned with pixel-aligned features for
human occupancy prediction. Zhang et al. [129] develop
the global-correlated 3D-decoupling transformer to extract
decoupled triplane features, integrating spatial locality and
human structural priors through a feature-mixing query strat-
egy.

The aforementioned studies focus on modeling pose-
dependent human modeling. Moreover, several investiga-
tions have aimed to generate reconstructed surfaces of
pose-independent clothedhuman from images depictingbod-

Fig. 12 Examples of clothed human reconstruction based on Implicit
surfaces. The reconstruction results source from PIFuHD [8]

ies in arbitrary poses. ARCH [104] introduces a semantic
deformation field to map query points from posed space to
canonical space and a semantic space wherein each point is
associated with a spatial feature. Subsequently, it computes
the occupancy, normal, and color of the human in canonical
space based on spatial and pixel-aligned features. ARCH++
[105] incorporates a geometry encoder to extract spatial
features of human geometry and pose from input images
utilizing the SMPL model. It then optimizes the occupancy
estimator of the human in both canonical and posed space.
Liao et al. [106] initially estimate a coarse SDF of the human
in canonical pose, relying onwrapped query points and a nor-
mal vector. Subsequently, an SDFNet is developed to refine
the coarse humangeometry extracted from the canonical SDF
field and deformed into canonical space. Moreover, a meta
HyperNetwork is defined to initialize the refinement SDFNet
based on the estimated SMPL model.

NeRFs Some studies utilize NeRF as a representation for
human reconstruction, training a generalized NeRF model
that predicts images from single input images under given
viewpoints or even novel poses, and can extract meshes from
them. MoNoNHR [130] is a novel NeRF-based architec-
ture that robustly renders free-viewpoint images of human
from a monocular image input. It consists of an image fea-
ture backbone, a mesh inpainter, a geometry branch, and
a texture branch. However, the reconstructed human NeRF
model cannot be animated by novel pose. SHERF [97] builds
the generalizable human NeRF model which can synthe-
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size novel views and poses of human from a single image
input. The sample points are transformed to the canonical
space through inverse LBS deformation. The RGB values
and density are generated by the feature fusion transformer
and NeRF decoder based on the 3D-aware global, point-
level, and pixel-aligned features. ELICIT [98] can create
free-viewpoint motion videos from a single image by con-
structing an animatable NeRF representation. It introduces
3D geometry prior and visual semantic prior to assist in
the estimation of the human shape and full-body clothing
from a single image. Human-LRM [131] models geometry
and appearance color within a predicted triplane NeRF by
LRM [132], rather than relying on human geometry priors
from the SMPL model. Subsequently, a diffusion model is
employed to generate high-quality novel view images based
on the coarse rendered image from the triplane NeRF. The
final geometry and appearance of the human are acquired
via a multi-view reconstruction model, conditioned on con-
sistent multi-view images predicted in the preceding stage.
The Human-LRM model necessitates an extensive dataset
comprising multi-view images and 3D human scans.

3.2 Appearance

In clothed human reconstruction, the appearance of the
human is typically represented by RGB values [7, 97, 104,
130], UV texture maps [51, 59, 133–135], and generated
multi-view images [108]. The fidelity of reconstruction in
unobserved regions is of paramount importance for achiev-
ing realistic clothed human reconstruction. However, due to
the limitations of single front-view image inputs or inferred
back-view images, the appearance in the posterior sections of
reconstructed models often appears excessively smooth and
blurred.With the advent of advancements in the 2D diffusion
model [117–119], there has been a surge in research focus-
ing on optimizing 3D human representations by integrating
geometry and appearance priors within these models. Cer-
tain methodologies [50, 51, 108, 131, 136] have introduced
personalized pretrained text-to-image models [117–119] to
guide the appearance inference of unobserved areas.

RGB values Similar to human shape estimation, the appear-
ance of a human is defined by the RGB values of query points
based on pixel-aligned features and reconstructed human
geometry embeddings [7, 97, 104, 130]. Natsume et al. [137]
align the frontal and back views of a person spatially by shar-
ing the same contour and many visual features, building a
front-to-back synthesis network to infer the back-view image
of a human. PHORHUM [94] anticipates the albedo colors
of corresponding surface points. The ultimate shaded color
is disentangled into an albedo color and surface point shad-
ing, which is predicted by a shading network contingent on
the surface normal vector and scene illumination embedding.

S3F [95] projects the points sampled around the estimated
GHUM model [45] onto the 2D feature map derived from
the input image, thereby engendering structured 3D features.
Subsequently, the geometry, albedo color, and final shaded
color are computed based on PHORHUM [94]. Sengupta et
al. [138] estimate the back-view image and front/back albedo
of the human in the single image input based on a diffusion
probabilistic model.

UV texturemapsThe 2DUV texture map is an efficient rep-
resentation of human appearance. Several studies [51, 59,
133–135, 139–141] have derived the appearance of recon-
structed clothed humans by inferring UV texture maps from
single image inputs. Lazova et al. [59] predict a complete
map in the UV space using an image-to-image translation
network based on estimated partial textures and garment seg-
mentation. Texformer [133] proposes a transformer-based
framework to estimate UV texture maps from single image
inputs, overcoming the limitations of existing methods that
solely rely on convolutional neural networks. It also intro-
duces a part-style loss to enhance the high fidelity of
reconstructed colors and reduce artifacts. HUman-SGD [51]
constructs a support set comprising an input image and an
inferred back-view image. It amalgamates visible pixels of
novel viewpoints from images within the support set and
inpaints the appearance in unobserved areas via a diffu-
sion model, conditional on the normal map and silhouette
map derived from estimated clothed human geometry. Sub-
sequently, the synthesized novel view image is assimilated
into the support set until all requisite viewpoint images are
generated. Finally, the images within the support set are
amalgamated via inverse rendering to procure an optimized
UV texture map. DINAR [134] first uses UV maps to sam-
ple the partial RGB textures of the input image based on
the estimated SMPL-X model and then converts the input
image into a neural texture using a StyleGAN2 generator.
It inpaints the concatenation of the neural texture and par-
tial texture to generate a complete texture using a diffusion
model. SHERT [135] obtains a partial texture map from the
input image based on the reconstructed semantic mesh and
camera parameters. It employs a ControlNet model [118] to
generate complete human textures, conditioned on the par-
tial texture and prompts of the texture descriptions with an
additional partial UV mask.

3.3 Advantages and limitations

By combining extensive high-quality 3D clothed human
scan data with efficient and flexible human representa-
tions, current monocular image-based methods can quickly
reconstruct relatively high-quality 3D human models from
monocular images input. However, several factors still con-
strain further improvements in reconstruction quality:
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Fig. 13 The framework for dynamic clothed human reconstruction
from video sequences comprises three essential components: the 3D
human representation, the deformation field, and the optimization pro-
cedure. The 3D human representation can be broadly categorized into
implicit NeRF and explicit 3DGaussians. The formulation of the defor-
mation field depends on the chosen 3D human representation. In NeRF
representation, two types of transformations govern sample coordinate
alterations: global world space transformations and local correspon-

dence embedding. The input to NeRF typically includes optimizable
latent codes encoding pose-dependent information, frame-specific intri-
cacies, and relevant features. Conversely, in the realm of 3D Gaussians,
canonical representations undergo deformation, resulting in posed 3D
Gaussians based on human pose parameters. These canonical 3D Gaus-
sians can originate from the SMPLmodel or be generated fromauxiliary
maps, such as UV position maps or triplane maps. Images used in this
figure source from ZJU-MoCap [142, 143] dataset

• Dataset bias: Existing datasets for training clothed human
scans often have significant gaps in the variety and
distribution of human poses and clothing compared to
real-world scenarios.

• SMPLparameter estimation:Accurately estimatingSMPL
parameters from monocular images remains a challeng-
ing step in reconstruction, limiting further advancements
in human model quality.

• Model reasoning: Monocular images typically capture
only forward-facing information. While incorporating
human structural information can enhance geometric
completeness, accurately inferring texture, especially in
occluded regions, continues to be a difficult problem in
monocular human reconstruction.

4 Clothed human reconstruction from videos

Departing from clothed human reconstruction from images,
dynamic human reconstruction requires not only accurate
rendering of human movements within each frame but also

consistency in reconstructed human representations across
different frames.

Some studies [144–146] construct a rigged clothed human
template of the actor featured in the video and capture the
human performance by optimizing the skeleton parameters
of the template fitting to the detected information from each
frame, such as joint positions. Alldieck et al. [99, 147] trans-
form the silhouette cones corresponding to dynamic human
silhouettes at each frame to obtain a visual hull in canonical
space via unposing silhouette camera rays. It back-projects
the image color from several frames to all visible vertices
of SMPL model to generate a full texture map. SelfRecon
[148] combines implicit SDF and explicit SMPL+D repre-
sentations to reconstruct space–time coherent clothed human
shape from a monocular self-rotating human video. This
hybrid representation is defined in the canonical space and a
deformation field is used to transform the canonical human
shape conditional on estimated human pose parameters from
each frame to posed human shape in corresponding frame.

Figure13 illustrates the general pipeline for reconstructing
dynamical clothed human from monocular videos, compris-
ing three components: human representation, deformation
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field, and optimization process. NeRF and 3DGaussian serve
as efficient and flexible 3D representations, defining themov-
ing human in videos implicitly and explicitly, respectively,
and are widely applied in human reconstruction from videos.
Despite their differing reconstruction processes, Sect. 4.1 dis-
cusses human reconstruction using NeRF representations
from monocular videos, while Sect. 4.2 discusses dynamic
human reconstruction based on 3DGaussian representations.
The primary role of the deformation field is to transform the
reconstructed human representation to a posed shape based
on provided human pose parameters. Table2 summarizes
these three components across various studies.

4.1 NeRF-based approaches

As shown in the upper part of Fig. 13, in dynamic human
reconstruction based on NeRF representations, the deforma-
tion field is used to transform the pose-dependent human
NeRF representation to the corresponding pose. NeRF pro-
vides radiance values for each query point in space, implicitly
modeling the clothed human. The deformation field converts
the Cartesian coordinates of the sampling points along the
camera ray in the posed space into the pose-dependent coor-
dinates in the reference space. This reference space defines
the human NeRF in various poses. The reference space is
primarily divided into two categories: the first is typically
the canonical space in an unposed state, and the second is a
combination of local spaces relative to different human body
parts. The design of the deformation field primarily com-
prises two main variants. One involves the conversion of the
global reference coordinate space from the posed space to
the canonical space. The other entails the translation of the
global space into the local relative space. Moreover, certain
investigations [143, 160] have amalgamated these two vari-
ants, wherein the initial step involves transforming each local
component (latent code or node) into the global space, fol-
lowed by the computation of local coordinate deformation
for sample points corresponding to the local reference. This
process can be mathematically described as follows:

F�(D�(x; θ),d) �→ (c, σ ) (8)

Here, F� denotes the general human NeRF parameterized
by �. The sample point in posed space is denoted by x, the
human pose parameters by θ , and the camera view direction
by d. The symbol D� represents the deformation fields and
� is the parameters of the deformation field.

Human NeRFs The representation of dynamic human sub-
jects draws upon NeRF and its variants. In studies such as
those by Wang et al. [155], Guo et al. [170], and Liu et al.
[163], researchers aim to construct two distinct neural net-
works: one for predicting opacity and the other for predicting

Fig. 14 Examples of clothed human reconstruction based onNeRF.The
leftmost image represents the ground truth. The middle two columns
display the rendering results of the reconstructed human from different
camera perspectives. The rightmost three columns show the rendering
results after transformation to new poses. The reconstruction results
source from InstantAvatar [157]

color. This bifurcation serves the purpose of disentangling
the geometry and appearance aspects of the canonical human
model. Within the geometry branch, the opacity of sample
points is contingent upon their SDFvalue, thereby facilitating
the extraction of a clothed human mesh from this geometry
network.

Approaches like Scarf [159] and Delta [171] employ a
hybrid representation to disentangle the human body from
garments. Here, the upsampled SMPL-X model, augmented
with an offset term, represents the human body,while aNeRF
model portrays the clothing. Additionally, mesh-integrated
volume rendering is introduced, predicated upon the inter-
section between rays and the human body mesh. In Wang et
al. [172], the disentanglement of human body and clothing
is achieved through the utilization of a double-layer NeRF,
capturing themovements of both body and clothing in canon-
ical space. A physical simulation loss is further employed to
preserve physically plausible clothing deformation.

MonoHuman [154] incorporates a forward correspon-
dence search module to expedite feature search across
different frames, guided by forward deformation, thereby
facilitating novel view synthesis. SLRF [160] employs a set
of structured local radiance fields to depict the human body,
with each local radiance field corresponding to a predefined
node based on the SMPL model. Neural Actor [163] inte-
grates 2D texture maps defined on the SMPLmodel as latent
variables to capture the dynamic deformation and appearance
of the human body. GP-NeRF [173] proposes a geometry-
guided multi-view feature integration approach to refine the
coarse geometry prior, leveraging the estimated SMPLmodel
and pixel-aligned features extracted from images.

Some methodologies [157, 174, 175] adopt a human
model based on InstantNGP [158] to reduce training costs
(Fig. 14). The UV volume introduced by Chen et al. [164]
is devised to predict the density and texture coordinates of
query points, along with a pose-dependent neural texture
stack (NTS) to encode appearance information. The final
color of query points is determined based on UV coordi-
nates and texture embedding interpolated from NTS. Kwon
et al. [176] initiate by generating a time-augmented skeletal
representation of human body motion, which is then fused
with pixel-aligned features of sample points at each timestep
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to obtain the fused query feature. GHuNeRF [177] constructs
a 3D feature volume from target SMPL vertex-size features
through visibility-aware feature aggregation, further enhanc-
ing this volume with temporally aligned features.

Global coordinates deformation In the realm of global
coordinates deformation, the human representation takes
the form of NeRF or its derivatives, all of which are
delineated within the canonical space. Sample points are
extracted within the posed space, contingent upon the cam-
era view. To compute their radiance concerning the canonical
NeRF, a wrapping procedure is requisite to transition them
into the canonical space, necessitating a Cartesian coordi-
nate transformation within the sampling world space. This
transformation conventionally adopts an inverse LBS trans-
formation premised on the human skeletal structure [150,
153, 163, 170, 178, 179]:

xp =
(

n∑

i=1

wc→p(xc)i Bi (θ)

)

xc (9)

xc =
(

n∑

i=1

w p→c(xp)i Bi (θ)

)−1

xp (10)

The former operation signifies the forward deformation,
which translates a point from the canonical space to points
in the posed space contingent upon the pose parameters,
while the latter represents the inverse operation. The for-
ward and inverse skinning weights of points corresponding
to human joint i , denoted by w

c→p
i and w

p→c
i , respectively,

are expected to be equivalent. The parameter n signifies the
number of joints, and the vector B1(θ), . . . , Bn(θ) encapsu-
lates the bone transformations corresponding to the human
pose θ . For sample points, their inverse skinning weights can
be approximated either by the nearest points on the SMPL
surface [163] or by the average of the skinning weights of
several nearest SMPL surface vertices [150, 159, 170, 171].

HumanNeRF [10] devises an optimizable explicit volume
representation to prognosticate the skinning weights of its
rigid deformation. Such methodologies aptly approximate
the skinningweights of the inverse LBS transformation. Peng
et al. [149] and Yu et al. [154] introduce auxiliary forward
deformationmeshes to guarantee parity between the skinning
weights of forward and inverse deformations. Meanwhile,
Tava [152] and InstantAvatar [157] fashion deformations via
a forward skinningweight optimization algorithm introduced
in SNARF [179]. ARAH [155] pioneers a neural network for
predicting the forward skinning weights of points in space
and proffers a novel joint root finding algorithm to pinpoint
the corresponding canonical point of intersection of camera
rays and the posed SDF iso-surface. AnimatableNeRF [149]
avails a consistency loss between the blend weights of the
posed-to-canonical and canonical-to-posed transformations

to optimize the canonical neural blend weight field and novel
pose latent code. Typically, a neural network is enlisted to
predict the offset stemming from nonrigid pose-dependent
deformation [10, 149, 152, 153, 163]. The pose parameters
estimated per frame by off-the-shelf tools may lack precision
and could undergo refinement during the optimization pro-
cess [10, 150]. In Zhi et al. [180], query point coordinates are
morphed from the posed space to the canonical space through
barycentric mapping. Initially, the canonical normal vector is
computed, and subsequently, it is retrogressed into the posed
space to derive the normal vector of the query points. Con-
versely, ActorsNeRF [181] adopts a coarse-to-fine approach,
harnessing a pretrained coarse-level canonical model derived
from multiple monocular video sequences to capture a gen-
eral coarse shape. Additionally, an instance-level canonical
model is leveraged to encapsulate human specifics emanating
from distinct human movements.

Local relative coordinatesAn alternativemodality formap-
pingCartesian coordinates of sample points fromposed space
to canonical space involves aligning the global Cartesian
coordinates of sample points with local coordinates corre-
sponding to distinct human body parts [155, 160, 161, 174].
In this paradigm, the global human form is typically seg-
mented into various local parts predicated on the human
skeletal structure.

A-nerf [161] introduces a skeleton-relative encoding
mechanism to process the positional and directional coor-
dinates of each query point, alongside a cutoff operation
to attenuate the influence of extraneous bones. The NARF
model [182] conceptualizes the human as a composite assem-
bly of several movable rigid bone parts, whereby the radiance
field of a 3D position is correlated with the most pertinent
bone. In SLRF [160], every sample point is tethered to a set
of predefined nodes, with each node undergoing deformation
via forward skinning and a learnable residual correspond-
ing to garment movements. Subsequently, the coordinates of
sample points are transposed to local correspondences, align-
ing with each bone part [182] or node [160]. Furthermore,
SLRF [160] advances a conditional variational auto-encoder
(cVAE) to compute node-associated residual motions and
dynamic detail embeddings for novel poses. SelfNeRF [174]
introduces a surface-relative representation predicated on the
observation that the k-nearest vertices on the human model
surface of sample points remain constant during human
movement. In Te et al. [183], a query embedding predi-
cated on the nearest projected vertex of the query point on
the posed SMPL mesh, the k-nearest adjacent vertices of
the projected vertex in the canonical SMPL mesh, and the
Euclidean distance between these adjacent vertices and sam-
ple points is proposed. Meanwhile, Xu et al. [162] propose a
surface-aligned representation of query points, entailing scat-
tered projection points on the canonical human mesh surface
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of query points and the signed distance between the query
points and projected points. Su et al. [184] forge a volume
feature for each body part founded on a graph neural network
(GNN), wherein local features of sample points correspond-
ing to each body part are amalgamated into a global feature,
subsequently utilized to compute the opacity and color of
the human. The surface projection method, delineated in
Zhang et al. [185], involves projecting sample points onto the
estimated SMPL model surface, with a deformation net pre-
dicting the nonlinear offset of projected points on the surface.
This process transmutes the coordinates of sample points in
posed space to a locally deformed coordinate system within
the neural deformable field space via surface projection and
offset calibration.

Additionally, research has been dedicated to amalgamat-
ing global coordinate transformations of query points with
local spatial embedding. In such hybrid deformation fields,
the global deformation of each local reference space typically
embodies forward deformation. Each local reference space
is posited in the canonical space with a base human pose.
Neural body [143] delineates a set of structural latent codes
serving as the conditional feature of NeRF input predicated
on the SMPL model, while SLRF [160] introduces several
nodes to construct a scene embedding of query points within
a local space on the SMPL model.

4.2 3D Gaussians-based approaches

Animatable human models can also be constructed using
a set of 3D Gaussians [38] augmented with an elaborate
deformation field. These 3D Gaussians represent the fun-
damental elements of the human, explicitly modeling it.
Instead of transforming sample points, the deformation field
is employed to transform the 3D Gaussians. Defined in
canonical space, the Gaussians undergo forward-oriented
deformation, which proves to be more accurate, especially
for sample points at the intersection of multiple body parts.
The integration of human representation priors, such as the
SMPLmodel, into the initialization and optimization process
of the 3D Gaussians is more straightforward.

Figure13 illustrates the general pipeline for animatable
human reconstruction from videos based on a 3D Gaussians
representation. This pipeline comprises three main stages:
3D Gaussians generation, forward deformation field genera-
tion, and optimization. There are two distinct approaches for
generating the canonical Gaussians. One approach initializes
the 3DGaussians directly from the SMPLmodel or estimated
canonical human mesh and then optimizes each attribute
during the training process. The other approach involves pre-
dicting auxiliary feature maps such as UV position maps,
2D Gaussian maps, and triplane feature maps and subse-
quently deriving Gaussian attributes from these maps. These
approaches are not mutually exclusive and can be combined,

with some Gaussian attributes being predicted by auxiliary
networks.

Initialization In the original research on 3DGaussians Splat-
ting [38], the initial sparse point cloud is derived from
structure-from-motion point sets. A well-executed initializa-
tion can significantly expedite the optimization process and
enhance the quality of the output [11, 38, 186]. However, this
approach necessitates the use of multi-view images, which is
often infeasible due to the typical input format of monocular
videos. Consequently, in these studies, the 3D Gaussians is
typically initialized with a human representation prior. The
SMPL model [12, 57] represents human shape and pose in
a simple and efficient manner and is frequently employed
as a reliable prior for human representation in the field of
animatable humanmodeling. A straightforward initialization
strategy is to utilize the vertices in the SMPL mesh surface
as the initial point clouds [11, 167, 187–189].

However, the SMPLmodel does not account for the geom-
etry of complex garments or the appearance of humans.
Consequently, the point clouds for initialization lack infor-
mation about the representation of clothed humans. In Jung et
al. [190], the authors utilize the center of eachSMPL template
mesh face as the initial point clouds, along with the parent
index and surface normal of the face as additional features.
In lieu of directly utilizing the SMPL model, some research
endeavors employ a mesh estimated by off-the-shelf tools
as the initialization point clouds. Compared to the SMPL
model, the estimated mesh exhibits enhanced accuracy in
terms of geometry and appearance information for the rep-
resentation of clothed humans. SplatArmor [191] initially
recovers a coarse per-face color SMPL+D mesh and initial-
izes the Gaussians with the optimized mesh. In addition to
the SMPL vertices, Li et al. [186] also employ the ECON
model [16] to generate a clothed, viewpoint-only textured
mesh from a selected frame. Thesemeshes are then deformed
to the canonical space, where they are fused with color to ini-
tialize the human Gaussians in the canonical space.

Human 3DGaussians In several studies, such as [167, 169],
spherical harmonics or their residuals are predicted by neu-
ral networks. Instead of directly using spherical harmonics to
represent the view-dependent color of the Gaussians, some
approaches, Hu et al. [168] andMoreau et al. [187], use opti-
mizable RGB values as color. In other works, such as Jena
et al. [191] and Qian et al. [188], a MLP with additional
pose-dependent features and other attributes is employed to
compute the color of the Gaussians. Kocabas et al. [167]
decodes the position offset and attributes of the Gaussians
using three MLPs, which take the position of the Gaus-
sians and features obtained from interpolating at a feature
tree plane as input. The Gaussians are attached to the 2D
UV map, and additional expressive features can be derived
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Fig. 15 Examples of clothed human reconstruction based on 3D Gaus-
sians. The left column presents the ground truth, while the right column
shows the rendering results of the reconstructed human from the corre-
sponding view. The reconstruction results source from GauHuman [11]

from the 2D UV space via a 2D convolutional neural net-
work (CNN) [192], enhancing the representation capability
of the Gaussians. In Li et al. [165], a 3D Gaussian is gen-
erated from front and back pose-dependent Gaussian maps,
which are produced by StyleUnet on position maps obtained
from a canonical template via orthogonal projection. Zhu et
al. [169], a texel-based 2D parameterization of the 3D Gaus-
sians is proposed, utilizing the texel of the template mesh to
store the parameters of the Gaussians. The parameters are
calculated from two 2D CNN decoders based on the motion-
aware textures map rendered from the template mesh and the
deformation network.

Deformation fields The deformation field is a fundamen-
tal aspect of animatable human modeling, capturing human
movements observed in videos and controlling the human
representation to alter its appearance based on specific pose
parameters. The deformation field is primarily applied to the
mean and covariance of the canonical 3D Gaussians distri-
bution and can be described as follows:

μp = D�(μc; θ) (11)

�p = D�(�c; θ) (12)

Here, the positions of the 3D Gaussians centers, denoted
by μp and μc, represent the means of the 3D Gaussians
in the posed space and canonical space, respectively. The

covariance matrices of the 3D Gaussians, denoted by�p and
�c, represent the covariance in posed and canonical spaces,
respectively. The pose parameters of the human, denoted by
θ , represent the transformation of the human in the video
frame. As previously mentioned, the human 3D Gaussians
is defined in canonical space. However, before rendering, it
is necessary to transform these Gaussians to the target pose.
This differs from the approach typically employed by NeRF-
based systems,which use inverse deformation towarp the ray
in posed space to canonical space. The deformation field is
specifically designed for this purpose and is critical to the
performance of human representation and rendering. The
deformation field consists of two parts: rigid deformation
and nonrigid pose-dependent deformation. The deformation
of the covariance matrix is mainly focused on the rotation of
the Gaussians’ rotational attributes.

The predominant form of rigid deformation is the LBS
transformation, which relies on the skeleton structure of the
SMPL model [165, 168, 186, 189, 190]. For a more nuanced
representation of rigid deformation, the blend weights of
LBS often incorporate additional learnable weights, known
as residuals associated with each Gaussians [11, 166, 188]
(Fig. 15). These residuals, derived from Gaussians shape
functions, are employed to refine the blend weights [167,
187]. SplatArmor [191] defines a weight function based
on the k-nearest neighbor SMPL vertices of a point in the
entire space to extend the blend weights transformation. Li
et al. [186], the closest triangular facet of each Gaussians on
the SMPL model is identified based on Cartesian distance
anchor in both canonical and posed space. Subsequently, the
Gaussians rotation transformation matrix is calculated and
applied to the rotation and spherical harmonics direction
of the Gaussians. The nonrigid deformation of the pose-
dependentGaussiansmaps is utilized to extract theGaussians
[165]. ASH [169] describes the wrapping of the canonical
Gaussians stored in the texel to a posed Gaussians via UV
mapping and dual quaternion skinning. To generalize novel
poses, the approach proposed in Li et al. [165] utilizes princi-
pal component analysis to project a novel driving pose signal
into the distribution of observed training poses.

Optimization The optimization process for Gaussians attri-
butes typically follows a series of steps, including rendering
loss, split, clone, and prune operations, consistent with the
3D Gaussians optimization process. GauHuman [11] pro-
poses the utilization of Kullback–Leibler (KL) divergence
of 3D Gaussians to guide the split and clone processes.
Moreover, a KL-basedmerge operation is employed to amal-
gamate redundant 3D Gaussians. Human masks acquired
via off-the-shelf tools are commonly used to regularize the
Gaussians distribution, thus preventing overfitting to the
background in Jena et al. [191]. Tomitigate the error resulting
from inaccurate pose parameter estimation, a pose parame-
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ter refinement module is typically integrated into the model
training pipeline [11, 165, 168, 188, 189]. The final blend
weights are expected to exhibit spatial smoothness [166] and
closely resemble the blend weights of the nearest SMPL ver-
tices [167, 187]. In Li et al. [189], it is demonstrated that [75]
utilizes local constraint information to regularize the defor-
mation of Gaussians between canonical and posed space,
thereby minimizing visual artifacts. 3DGS-Avatar [188] pro-
poses an as-isometric-as-possible regularization to constrain
neighboring 3D Gaussians centers, ensuring a consistent
distance preservation after deformation and reducing noise
generation.

4.3 Advantages and limitations

Human reconstruction from videos using NeRF and 3D
Gaussian representations leverages preprocessed video
datasets that are widely accessible and applicable across var-
ious contexts. These methods offer high flexibility, enabling
adaptive adjustments to human parameters in the video and
generating high-quality renderings based on camera param-
eters. The reconstructed human models typically generalize
well to new poses. However, extracting mesh surfaces from
these methods can be complex and often requires additional
sophisticated regularization techniques. Additionally, limi-
tations in input viewpoints, typically restricted to monocular
perspectives, can result in the loss of surface detail, such as
clothing wrinkles, during rendering. Currently, deformation
fields representing human motion in videos are mainly based
on SMPL model movements, and accurately capturing the
motion of clothing, particularly loose garments, remains a
challenging task.

5 Evaluation

This section provides an overview of datasets commonly
employed for both training and evaluating clothed human
reconstruction, along with the frequently used quantitative
evaluation metrics.

5.1 Datasets

Table3 provides a comprehensive overview of the most com-
monly employed high-quality clothed human scan datasets
for training 3D human reconstruction models and human
movement datasets for evaluating dynamic human recon-
struction.

The following datasets have been proposed for use in
3D pose estimation algorithms: Human3.6M [193], CMU
Panoptic Studio dataset [194], 3D Poses in theWild (3DPW)
dataset [196], MPI-INF-3DHP [195], and AIST++ dataset
[197]. Human3.6M [193] comprises 3.6 million accurate

3D human poses with moderately realistic clothing, cap-
tured in an indoor marker-based motion capture system.
The CMU Panoptic Studio dataset [194] is captured by a
massively multi-view system and includes multiple people
engaging in social games. The 3DPW [196] records chal-
lengingmovements in outdoor scenes captured by a handheld
camera phone, including some multiple person movements.
TheMPI-INF-3DHP [195] is captured in a markerless multi-
camera green screen studio and augmented by replacing
masked regions. AIST++ dataset [197] is constructed from
the AIST Dance Video DB dataset [198]. It is a large-scale
video dataset of street dances, employingmultiple fixed cam-
era angles to capture the dance movements of subjects.

MonoPerfCap [144], DeepCap [146], and DynaCap [205]
have been proposed for the evaluation of human performance
capture. MonoPerfCap [144] contains human motions cap-
tured in various settings with both daily and challenging
movements, along with sections providing accurate surface
ground-truth. DeepCap [146] contains 13 human move-
ment sequences in indoor and outdoor scenes, encompassing
various types ofmotions, with the ground-truth 3D joint posi-
tions. DynaCap [205] is a multi-view human motion dataset
that provides 3D scans of rigged skeletons.

Multi-view Neural Human Rendering (NHR) [142], ZJU-
MoCap [142, 143], and Neural Actors [163] datasets are
representative of a common multi-view human movement
dataset in which actors perform complex motions with daily
clothing. The THuman4.0 dataset [160] contains three multi-
view human motion sequences that are used to evaluate
the method proposed for animatable human avatar recon-
struction in SFRF [160]. The People-Snapshot dataset [99]
captures the rotation of actors in an A-pose under a static
camera in a variety of backgrounds. Each actor is depicted
wearing daily attire. These datasets are frequently utilized in
the evaluation of novel view synthesis of human movements.

Recently, there has been a proliferation of higher quality
and larger-scale datasets aimed at evaluating approaches to
novel view and novel pose synthesis of human movements.
ActorsHQ[199] stands out as a high-fidelity dataset of human
motion captured by 160 synchronized cameras at 12MP res-
olution. Alongside raw RGB images, it offers 3D meshes at
every frame. HuMMan [200] emerges as a large-scale, multi-
view human movements dataset comprising 1,000 human
subjects captured in 400,000 sequences and 60 million
frames, employing 10 synchronized RGB-D cameras. The
GeneBody-1.0 [201],DNA-Rendering [91], andMVHuman-
Net [202] datasets are noteworthy for their comprehensive
coverage of human movements. These datasets encompass a
diverse range of human types, body shapes, ages, and gen-
ders. GeneBody-1.0 [201] andDNA-Rendering [91] datasets
present actors in a variety of clothing types, materials,
and textures, including everyday attire and specific profes-
sional scenarios such as theatrical costumes. MVHumanNet
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Table 3 Summary of
commonly used datasets for
training and evaluating human
reconstruction models

Dataset #Sub #Outfits #Motions #Views #Frames Videos Scans

Human3.6M [193] 11 11 17 4 3.6M � �
CMU panoptic [194] 8 8 5 480 – � ×
MPI-INF-3DHP [195] 8 8 16 14 1.3M � ×
3DPW [196] 7 18 60 1 51K � �
AIST++ [197, 198] 30 30 – 9 10.1M � ×
People-snapeshot [99] 11 24 1 1 – � ×
ZJU-MoCap [142, 143] 9 9 – 21 – � ×
NHR [142] 3 3 5 80 – � �
Neural actors [163] 4 4 – 79–86 87886 � ×
ActorsHQ [199] 8 8 52 160 40K � �
HuMMan [200] 1000 1000 500 10 60M � �
GeneBody-1.0 [201] 50 100 61 48 2.95M � ×
DNA-rendering [91] 500 1500 1187 60 67.5M � ×
MVHumanNet [202] 4500 9000 500 48 645.1M � ×
BUFF [203] 6 12 – – 13.6K � �
CAPE [60] 11 88 – – 80K � �
THuman2.0 [25] 500 500 – – – × �
THuman3.0 [204] 154 154 – – – × �
2K2K [103] 2050 2050 – – – × �

The columns “#Sub” and “#Outfits” denote the number of actors and total garments, respectively. “#Motions”
indicates the observed human movement types, and “#Views” represents the number of cameras used. “–”
signifies that the attribute is not specified, while � indicates the presence of the specified data type and ×
indicates the absence

[202], on the other hand, offers a wide array of everyday
clothing styles and colors found in real-world settings. It
defines an action library that represents a broad spectrum of
humanactions, includingboth daily-life activities andprofes-
sional actions such as sports activities. DNA-Rendering [91]
dataset also incorporates human-object interactivity, captur-
ing instances where human motions interact with objects of
varying sizes.

Bodies Under Flowing Fashion (BUFF) [203] and CAPE
[60] provide several 3D scans sequence of actors perform-
ing simple actions. The BUFF dataset [203] also provides
the texture of scans. CAPE [60] separates the clothing from
the body, thereby providing an accurate ground-truth body
shape under clothing. THuman2.0 dataset [25] and 2K2K
dataset [103] represent two of the largest publicly available
datasets of clothed human scans captured by a multi-view
DSLR camera system. In addition to the original scans, they
also provide comprehensive label information, including 3D
pose, texturemap, andSMPLmodel parameters. THuman3.0
dataset [204] is a collection of human-garment combinations,
with each combination comprising multiple scans. HUMBI
[206, 207] is a large multi-view image dataset of human
body expressions with natural clothing. In addition to the
raw images, the dataset provides processed point clouds of
the entire body, different body parts, and garments. There are

also some large-scale commercial photorealistic 3D clothed
human scans, such as RenderPeople [208].

5.2 Evaluationmetrics

Evaluationmetrics for clothedhuman reconstructionThe
final output of the clothed human reconstruction from single
image is themeshwhich can be extracted from the parametric
human model, depth maps and implicit functions. Common
quantitative evaluation metrics of geometry reconstruction
include point-to-surface Euclidean distance (P2S), chamfer
distance, and normal reprojection error [7]. P2S represents
the average distance from the vertices on the reconstructed
surface to the ground-truth, while the chamfer distance cal-
culates the distance between the reconstructed surface and
the ground-truth surface. The normal reprojection error mea-
sures the L2 error between two normal maps rendered from
the reconstructed surface and the ground-truth surface at the
input viewpoint, assessing the fineness of the reconstructed
local details and projection consistency from the input image.

Table4 summarizes the metrics associated with typical
human reconstruction approaches as discussed in Sect. 3.

Evaluationmetrics for dynamic human reconstruction In
the study of dynamic human reconstruction using NeRF and
3D Gaussian representations, the quality of the reconstruc-
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Table 6 Quantitative comparison of animatable clothed human reconstruction from video in novel pose rendering

Methods Human 3.6M [193] ZJU-MoCap [143] Inference time ↓
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Animatable_NeRF [149] 22.55 0.880 – 23.16 0.893 – 30 m

TAVA [152] – – – 32.02 0.975 – –

ARAH [155] 23.42 0.896 – 24.63 0.911 0.107 10–20s

SLRF [160] – – – 25.17 0.916 –

Xu et al. [162] 23.25 0.892 – 24.42 0.902 – –

UV volume [164] 25.04 0.874 0.141 23.69 0.910 0.104 68.23 ms

tion is typically assessed by evaluating the similarity between
novel view renderings and real images. Commonly employed
metrics include peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM) [209], and learned perceptual image
patch similarity (LPIPS) [151]. PSNR is a widely adopted
metric that evaluates the quality of reconstructed images by
comparing the logarithmic difference between the maximum
possible pixel value and the mean squared error of the recon-
structed and reference images. SSIM [209] measures the
similarity between two images by assessing luminance, con-
trast, and structural information, thus providing a perceptual
metric that reflects the characteristics of the human visual
system. Higher values of PSNR and SSIM indicate a greater
similarity between the two images. LPIPS [151] evaluates
the perceptual similarity between images using deep neu-
ral network features, offering a more accurate representation
of human visual perception compared to traditional metrics.
Additionally, the training time and frame rate (FPS) during
inference are crucial metrics for evaluating the performance
of these scene modeling approaches.

Table5 presents a quantitative comparison of common
dynamic human reconstructionmethods on threewidely used
evaluation datasets: Human 3.6M [193], People-Snapshot
[99], and ZJU-MoCap [143]. The results in the table are
averaged over multiple individual actor’s assessments. Most
papers only report qualitative results of reconstructed human
rendered in novel poses. Table 6 provides quantitative eval-
uation results from several studies on reconstructed human
driven by novel poses.

6 Conclusion and future directions

This survey summarizes the research on high-quality clothed
human reconstruction from monocular images and video
inputs over the past five years. It provides an overview
of common 3D human representations and discusses the
reconstruction of clothed human geometry and texture from
monocular image inputs under different representations.
Furthermore, the survey introduces studies on dynamic

human reconstruction from monocular videos. Additionally,
it summarizes the commonly used datasets for training and
evaluation, along with quantitative analysis results of some
representative methods.

The following three issues are critical for achieving high-
quality reconstruction of clothed humans from monocular
images and deserve further thorough investigation.

Improvingdetail in avatar reconstructionCurrent research
predominantly focuses on the holistic representation of
clothed human avatars. However, this approach often leads to
insufficient geometric detail and overly smooth results, par-
ticularly in areas such as the hands and face. Integrating the
study of hand and face reconstruction with full-body recon-
struction can help address the challenges posed by complex
human poses and enhance local details [16, 210, 211]. This
more refined prior knowledge can be utilized to achieve a
more realistic reconstruction.

Separating body and clothing layers In prevailing method-
ologies of clothed human reconstruction, the body and
clothing of the subject are frequently treated as a single layer.
This holistic representation limits applications such as cloth-
ing editing and virtual try-on. Amore effective approach is to
treat them as two separate layers: the outer clothing and the
human body underneath, with each layer being reconstructed
independently [159, 212, 213]. However, as discussed in
Sect. 3.1, the parametric or generated clothing layer often
lacks realism, making it challenging to independently infer
the realistic underlying body and clothing geometry.

Occlusions and incomplete inputs In real world, occlusions
caused by other objects, self-occlusions from different body
parts, and incomplete visibility of the human part in input
images pose significant challenges for accurate and com-
plete human reconstruction. Similar to inferring textures in
occluded areas, the possible reconstructions of the human
in occluded or incomplete regions are not unique. Recent
studies have attempted to reconstruct human meshes [214,
215], NeRF [216], and 3D Gaussian [217] representations
from these complex environments. These studies on occlu-
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sions and incomplete inputs are of significant importance for
applying clothed human reconstruction in real-life scenarios.
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