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Abstract

Cross-modal frameworks have achieved impressive
performance in point cloud representation learning,
where a 2D image encoder is employed to transfer
knowledge to a 3D point cloud encoder. However, the lo-
cal structures between point clouds and corresponding
images are unaligned, which results in a challenge for
the 3D point cloud encoder to learn fine-grained image-
point cloud interactions. In this paper, we introduce a
novel multi-scale training strategy (PointCMC) to en-
hance fine-grained cross-modal knowledge transfer in
the cross-modal framework. Specifically, we design a
Local-to-Local (L2L) module that implicitly learns the
correspondence of local features by aligning and fusing
extracted local feature sets. Moreover, we introduce the
Cross-Modal Local-Global Contrastive (CLGC) loss,
which enables the encoder to capture discriminative fea-
tures by reasoning local structures to their correspond-
ing cross-modal global shape. The extensive experimen-
tal results demonstrate that our approach outperforms
the previous unsupervised learning methods in various
downstream tasks such as 3D object classification and
semantic segmentation.

Keywords: Self-Supervised Representation Learn-
ing, Contrastive Learning, Cross-Modal Learning, Point
Cloud Understanding

1. Introduction

Assisting machines in comprehending the 3D world is
critical to numerous real-world applications, including au-
tonomous driving, AR, VR, and other fields. In order to
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Figure 1: We present PointCMC, a method that utilizes
pairs of images and point clouds with positive but agnostic
correspondences among local parts. PointCMC uses intra-
and inter-attention modules to explore these agnostic cor-
respondences. Furthermore, PointCMC investigates cross-
modal local-global correspondences by reasoning global
features from local features in different modalities.

enhance machine comprehension of the surroundings, in-
termediary forms such as point clouds, meshes, and voxels
have emerged. Point cloud data has gained immense pop-
ularity among these alternatives due to its ease of use, as it
does not require preprocessing. Directly processing point
clouds is contingent upon the ability to comprehend them,
and the core challenge in this regard is to capture discrimi-
native representations. While many supervised approaches
[35][37][28][50][26][52][59] donate to tackle this issue,
they rely on costly and time-consuming annotations. Self-
supervised methods[1][23][56][49][64][2] have emerged to
address this problem, which learns the latent semantics of
point cloud data through pretext tasks. However, the scales
of point cloud benchmarks constrain models from learning
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discriminative representations. Given the successful devel-
opment of multimodal contrastive learning in domains such
as audio-video and image-natural language, the correspond-
ing 2D images of point clouds have become a promising
auxiliary input for point cloud comprehension, which does
not require additional annotations.

Cross-modal contrastive learning approaches[2] [18][30]
can help encoders learn 2D-3D correspondences for under-
standing point clouds. These promising strategies mainly
rely on two key advantages: 1) Complementary: The
2D and 3D learning signals exhibit a certain degree of
complementary. 2) Agnostic transformations: Enforcing
2D and 3D correspondence promotes agnostic transforma-
tions that can improve 3D representation learning. Some
methods[2][18] explore object-level cross-modal corre-
spondences, whereas others[30][29][47] investigate point-
pixel level correspondences. Object-level methods often
lose local features, as the encoders depend on consuming
points or pixels to acquire global features. Besides, point-
pixel level methods predominantly require annotated point-
pixel pairs or image-reconstructed point clouds, which may
result in a loss of 2D semantics and local geometric per-
ception in the reconstruction process. These approaches
generally lack the ability to model cross-modal local corre-
spondences, as local features contain rich learning signals.
Therefore, it is natural to raise a question: Could we en-
hance point cloud shape analysis by modeling multi-scale
correspondences across modalities, particularly correspon-
dences between local representations?

The first challenge is to establish direct local correspon-
dences across modalities. Directly annotating the corre-
spondences between local regions is a time-consuming and
complex task. Nevertheless, the intermediate representa-
tions captured by the encoder are collections of local repre-
sentations, which have the potential to facilitate the trans-
fer of cross-modal local representations. The second chal-
lenge is to establish local and global correspondences across
modalities. Inspired by [39], we can design a reasoning task
to implicitly build cross-modal local-global interactions to
overcome the lack of correspondence.

We present PointCMC, a novel framework designed to
address the aforementioned challenges. We utilize two in-
dependent encoders as general setting as other methods
[2][30][19], one for image data and the other for point cloud
data, to extract multi-scale representations from their re-
spective modalities. However, unlike these methods, we
introduce a local-to-local (L2L) module that aims to per-
form cross-modal alignment and fusion on intermediate
representations to investigate cross-modal local correspon-
dences. To further explore the potential correlation between
cross-modal local and global features, we propose a Cross-
Modal Local-Global Contrastive (CLGC) loss that enables
the point cloud encoder to capture the shared semantics of

cross-modal global and local features. Moreover, a conven-
tional cross-modal global Contrastive (CGC) loss is also ap-
plied in PointCMC to facilitate knowledge transfer from the
image encoder to the point cloud encoder.

We have conducted to validate the effectiveness of our
method with a series of downstream tasks on several generic
point cloud backbone networks. Furthermore, a sequence
of ablation experiments has validated the impact of the pro-
posed three modules to our method.

The main contributions of our approach are as follows:

• We propose a novel L2L module that does not require
the annotation of local correspondences between point
clouds and images. This module investigates cross-
modal local correspondences by aligning and fusing
intermediate representations across modalities.

• We propose a CLGC loss function, which is used to
drive a local-to-global reasoning task to promote the
learning of shared semantics across modalities.

• We evaluate our method in three downstream tasks: 1)
3D object classification, 2) few-shot object classifica-
tion, and 3) 3D Object part segmentation. Quantita-
tive and qualitative results on real-world and synthetic
benchmarks have shown that our methods capture dis-
criminative representation and outperform the state-of-
the-art methods.

2. Related Work

2.1. Supervised methods for point cloud learning

Point cloud understanding is a difficult task compared to
NLP and 2D. On the one hand, point clouds lack a highly
regular structure: there are images for 2D and word embed-
dings for NLP. On the other hand, point clouds also need to
be permutation invariant when processing. Unlike 2D im-
ages, which have a unified architecture like convolutional
neural networks, there are many network structures to han-
dle point clouds from different perspectives. Point-based
networks [35][37] directly consume raw point clouds, and
the pioneering work is Pointnet [35], which proposes an ar-
chitecture that stacks MLP layers to extract point-wise fea-
tures independently, then aggregates them by max pooling.
However, PointNet fails to capture local information. To
address this issue, Qi et al. [37] then propose PointNet++
to learn global and local information through the hierarchi-
cal aggregation of neighborhood points. Graph-based net-
works model the relationship between points as a graph.For
example, Wang et al. [50] propose pioneering work dubbed
DGCNN, which use a graph convolution named EdgeConv
to capture local features for each point from its k nearest
neighbor points. Voxel-based networks [36][21] voxelize
irregular point clouds into regular 3D grids and use 3D



convolution for feature learning. Spatial CNN-based net-
works [44][28] directly apply Spatial-convolutions on irreg-
ular point clouds. RSCNN [28] is proposed to explicitly en-
code the geometric relation of points and achieve contextual
shape-aware learning of point clouds.

2.2. Self-supervised methods for point cloud learning

Motivated by the success of self-supervised representa-
tion learning [6][65][3][5][15][40][11] in the field of 2D,
some recent works have investigated self-supervised meth-
ods for 3D representation learning, which can be roughly
divided into two categories.

Classical learning methods. Classical methods typi-
cally rely on autoencoders [20] and generative adversar-
ial networks (GANs)[10]. Autoencoder networks aim to
train an encoder to extract the representation of input point
clouds, while a decoder reconstructs the point cloud from
the captured representation. This simple process enables
the encoder to learn shape information, making autoencoder
networks popular for many self-supervised learning meth-
ods. For example, self-reconstruction[61][8][23][67][13], a
classical self-supervised learning task based on autoencoder
networks, forces the final output to be the same as the input.
Autoencoder-based point cloud up-sampling[24][63][25]
and completion[48][17][42][55] emphasize learning fine-
grained representations, which enables the encoder to cap-
ture more comprehensive representations. In addition to au-
toencoder networks, GAN-based methods[1][45][22] learn
representations by adversarially training generators and dis-
criminators without annotations. After training, the learned
discriminator can be applied into various downstream tasks.

Contrastive learning methods. Contrastive learning
uses predefined positive and negative samples as inputs,
maximizing agreements between positive pairs and mini-
mizing agreements between positive and negative samples.
Xie et al. [56] propose to learn representations by per-
forming point-level discriminations from two viewpoints.
Zhang et al. [64] propose a method based on deep graph
convolutional neural networks, which learns representations
by verifying whether two random parts belong to the same
object. Du et al. [7] propose a method based on the non-
local self-similarity of point clouds to learn representa-
tion. Rao et al. [39] combine contrastive learning and self-
reconstruction to formulate a task focusing on global and
local representations reasoning. Huang et al. [16] introduce
BYOL [11] into the point cloud and extract spatial and tem-
poral representation from point clouds. Unlike prior works,
we attempt to exploit contrastive learning in modeling 2D-
3D correspondence and further explore the multi-scale cor-
respondences across modalities.

2.3. Cross-modal learning for point cloud learning

In recent years, cross-modal learning [68][38][2]
[53][60] has shown that additional training signals, such
as data from other modalities, can help encoders to cap-
ture representations. Some recent works have shown the
success of cross-modal learning between 2D images and
natural language. However, as pointed out in [54] , few
methods use 2D images as auxiliary inputs to enhance 3D
representation. Xu et al. [57] directly transfer 2D convolu-
tional models to the point cloud model by inflating 2D con-
volutions and replicating parameters. Liu et al. [30] intro-
duce a cross-modal knowledge distillation approach that en-
forces point correspondences by reconstructing 2D images
into point clouds, but this process may lead to the loss of
2D semantics. Jing et al. [18] and Afham et al. [2] learn 3D
point cloud representation by predicting correspondences
between cross-modal global representations and introduc-
ing auxiliary cross-modal instance discrimination, respec-
tively. Inspired by the above cross-modal learning methods,
we propose a training strategy that establishes multi-scale
cross-modal correspondences to transfer 2D image knowl-
edge to the point cloud encoder.

3. Method

The proposed PointCMC method aims to model cross-
modal multi-scale correspondences in a self-supervised
way, and its key component is the L2L module. This section
provides a detailed overview of the method and its key com-
ponent. The overall framework is shown in Figure 2,which
includes several components that work together to achieve
the desired results.

3.1. Method Overview

The input can be represented as {Pi, Ii}, with Pi ∈
RN×3 and Ii ∈ RH×W×3, where Ii is a random-view ren-
dered image from point cloud Pi. Our architecture consists
of two Encoders {Ep, Eimg} and the L2L module. We
use EP to extract multi-scale point cloud features from aug-
mented Pi and use Eimg to extract multi-scale features from
augmented Ii. Using the extracted features as inputs, our
method first models the correspondences of cross-modal lo-
cal features through the L2L modules. This module em-
ploys intra-attention and inter-attention blocks to consider
the correspondences between cross-modal local patches and
applies a feature alignment block (FAB) to constrain fused
features. In addition, we model the cross-modal local-
global relationships by utilizing the CLGC loss. To learn
global correspondences, we also use the CGC loss to en-
force the global features of images as a centroid to the
global features of point clouds.
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Figure 2: PointCMC leverages an additional module, known as L2L, which inserts between the 3D and 2D backbones. This
module consists of intra-attention blocks and inter-attention blocks. Specifically, the CLC loss is employed to explicitly learn
local correspondences within the optimized unimodal representations of intra-attention modules. Moreover, inter-attention
modules further capture local correspondences implicitly through the use of the FAB module. Additionally, the CLGC loss
is applied to explore the potential connections between representations across different levels of modalities. The CGC loss
is also applied to learn the connections between global representations across modalities. After training, the L2L module is
discarded, and only the point cloud encoders are retained for downstream tasks.

3.2. L2L Module

This subsection introduces how the L2L module utilizes
intra-attention and inter-attention blocks to learn local cor-
respondences for image and point cloud. Specifically, the
L2L module takes the cross-modal intermediate representa-
tions into intra-attention blocks to procure their optimized
versions. The CLC loss is then applied to these optimized
versions. Subsequently, we fuse these optimized represen-
tations and continue their refinement using inter-attention
blocks. Finally, the representations are input into the FAB
block to facilitate local correspondences.

Intra-attention block. The intra-attention block, illus-
trated in Figure 3, utilizes the self-attention mechanism that
takes three specific inputs: query (Q), key (K), and value
(V ). This block selectively weighs the importance of vari-
ous positions in a sequence by computing the similarity be-
tween the representation of each position (Q) and that of all
other positions (K and Q). The resulting attention scores
are used to compute a weighted sum of the values, repre-
senting the self-attention mechanism’s final output. In our
work, we employ intra-attention blocks to facilitate interac-
tion within the modality.

Inter-attention block. In our inter-attention module, we
have integrated two cross-attention mechanisms: the co-
attention and merge-attention mechanisms. As illustrated in

Figure 3, under the co-attention mechanism, the optimized
representations of the point cloud and image are individ-
ually inputted into separate transformers, and cross-modal
interactions are enabled through cross-attention techniques.
In addition, the optimized representations of the point cloud
and image are merged under the merge-attention mecha-
nism and subsequently fed into the same transformer.

The co-attention mechanism is implemented by acquir-
ing the K and Q values from another modality, thereby sup-
pressing unimodal interactions and enhancing cross-modal
interactions. On the other hand, the merge-attention mech-
anism shares Q, K and V between modalities, further
promoting cross-modal interactions. Our ablation results
demonstrate that the joint use of these two mechanisms is a
superior choice.

FAB block. The FAB module is a nonlinear transfor-
mation that maps cross-modal representations to the same
feature space, which can significantly reduce negative trans-
fer caused by directly aligning features, as demonstrated in
the results presented in[60] . To enhance the alignment of
cross-modal representations, we pre-train the FAB module
using image features and subsequently freeze it during the
PointCMC training stage.
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blocks, and the feature align block. Note that the representa-
tions captured by inter-attention blocks are applied to CLC
loss and CLGC loss.

3.3. Pre-training Objectives

In this subsection, we provide an in-depth discussion
on the training of PointCMC. To be more precise, we in-
troduce the multi-scale contrastive losses, which aim to
learn the multi-scale correspondences between cross-modal
representations. Subsequently, we present the commonly
used feature align loss in point cloud analysis tasks, which
aims to optimize the reconstruction effect of fused features,
thereby promoting implicit alignment between features.

CLC Loss. By leveraging the intra-attention blocks
mentioned earlier, we can allocate more significant atten-
tion to salient local regions in cross-modal intermediate
representations, resulting in optimized local representations
denoted as {f img

l , f p
l }. Our primary objective is to ensure

that f img
l is more similar to f p

l of the same object than to
other objects. Inspired by instance discrimination, we in-
troduce a novel CLC loss that maximizes the similarity be-
tween f img

l and f p
l while simultaneously minimizing the

similarity between f p
l and representations of other objects.

Mathematically, this loss can be expressed as:

s(a, b) = exp(sim(a, b)/τ), (1)

c(x, y, i) =
s(xi, yi)∑N

k=1,k ̸=i s(xi, xk) +
∑N

k=1 s(xi, yk)
, (2)

LCLC = −
1

2N

[
N∑
i=1

log(c(f img
l , f p

l , i) + c(f p
l , f

img
l , i))

]
, (3)

where N and τ are the numbers of local representations
and the temperature coefficient, sim(·) denotes the cosine
similarity function.

CLGC Loss. In this subsection, we introduce a novel
loss for modeling local-to-global correspondence across
modalities. As noted by [39], a semantic correlation ex-
ists between local and global features of 3D point clouds.
We extend this observation to cross-modal learning, lever-
aging the CLGC Loss. This loss relies on two perspectives:
Firstly, we can consider the local features and their corre-
sponding cross-modal global features as positive samples
and utilize the CLGC loss constraint to promote the transfer
of latent semantics. Secondly, we can view the constraint
process of the CLGC loss as reasoning from local to global,
thereby compelling the model to acquire shared semantic
information across modalities. Further, Our ablation exper-
iments provide evidence for the efficacy of the CLGC Loss.

Specifically, the intermediate representations of the
point-cloud modality are constructed in the same manner
described above, which we denote as f p

l . Meanwhile,
the global representations are extracted from the image en-
coders and denoted as g img . We then aim to maximize
the local-to-global similarity within the same batch while
minimizing the similarity between batches to learn shared
attributions. Therefore, our method enables the modeling
of cross-modal local-to-global correspondence, which can
be expressed as follows:

LCLGC = −
1

2N

N∑
i=1

log (c ( gimg , f p
l , i) ). (4)

CGC Loss. In addition to the multi-scale correspon-
dence learning discussed in the previous sections, we in-
troduce a general auxiliary contrastive objective promot-
ing high-level semantic correspondence across modalities.
As mentioned before, the global representations {gp, gimg}
of point-cloud and image modalities are utilized. We de-
fine the cross-modal global representation of the same ob-
ject in the shared space as a positive sample. By incor-
porating harder negative samples (the representations from
different modalities) in our approach, we aim to enhance
the representational capability, as demonstrated in previ-
ous works[2][66]. Consequently, our cross-modal global-
to-global correspondence can be expressed as follows:

LCGC = −
1

2N

N∑
i=1

log (c ( gimg , gp, i) ). (5)

Feature Align Loss. We note that while the CLGC loss
can ensure the similarity of local features with global rep-
resentations of another modality, it may not be sufficient to
guarantee the quality of the local features. To further en-
hance the quality of cross-modal local representations, im-
posing additional constraints on cross-modal local represen-
tations are necessary. We utilize self-reconstruction tasks
as a reliable solution, as they are general low-level genera-
tion tasks that optimize the quality of local representations
during the reconstruction process and can implicitly align



cross-modal local representations in PointCMC.
After reconstructing the fused representations into the

3D space using the cross-modal point generator, we ob-
tain reconstructive point clouds P recon. To ensure high-
quality local features, we impose the Earth Mover’s Dis-
tance (EMD) constraint between P recon and the ground-
truth point clouds Pgt. This constraint can be expressed as
follows:

Lrecon = min
ϕ:S1→S2

N∑
p∈S1

||p− ϕ(p)||2, (6)

where S1 = Precon, S2 = Pgt and ϕ : S1→S2 is a bi-
jection.

Overall Objective. Our ultimate joint learning objec-
tive combines the losses from the preceding four sections
to facilitate the multi-scale 2D-3D correspondences, where
α = 1, β = 1, and γ = 10 are the weights to adjust the
ratios of each loss, respectively..

Lfinal = LCLC + αLCLGC + βLCGC + γLrecon. (7)

4. Experiments

To assess the effectiveness of our model in learning point
cloud representations, we conduct experiments on three
widely adopted downstream tasks. In addition, we investi-
gate the impact of our proposed module and losses in abla-
tion studies. Specially, we introduce our pre-training setting
(Sec 4.1), followed by the presentation of our experimental
results on the downstream tasks (Sec 4.2), which demon-
strates the efficacy of our proposed model. Lastly, we report
the results of our ablation studies (Sec 4.3).

4.1. Pre-Training

Dataset. For pre-training, we utilize the ShapeNet[4],
which consists of over 50,000 CAD models across 55
classes, as our point cloud dataset. We also employ an im-
age dataset[58] that contained 43,783 images of 13 classes
rendered from ShapeNet at random angles. To maintain
point cloud-image pairs, we limite our selection to the 13
classes in common between the two datasets. Our input
point clouds are sampled to contain 2048 points, while cor-
responding rendered images are resized to (224, 224). To
enhance the robustness of our model, we apply a series of
data augmentation techniques during the pre-training stage.
Specifically, we utilize scaling, translation, and rotation
transformations for the point cloud data, and apply random
crop, color jittering, and random horizontal flips to the im-
age data.

Implementation Details. Our proposed PointCMC
is implemented by PyTorch[33] framework and a single
GTX3090 GPU. To ensure a fair comparison with exist-
ing methods, we select DGCNN[50] and RSCNN[28] as the

Table 1: Linear classification results on the ModelNet40
dataset. After training the model, we evaluate its perfor-
mance by fitting a linear SVM classifier onto the Model-
Net40 test dataset and reporting the overall accuracy(%).
Notably, our proposed PointCMC method outperforms pre-
vious self-supervised approaches on both DGCNN and
RSCNN backbones.

Method ModelNet40
3D-GAN [51] 83.3

Latent-GAN [1] 85.7
SO-Net [23] 87.3

FoldingNet [61] 88.4
MRTNet [9] 86.4

3D-PointCapsNet [67] 88.9
DepthContrast [66] 85.4

ClusterNet [64] 86.8
VIP-GAN [12] 90.2

DGCNN + Multi-Task [14] 89.1
DGCNN + Self-Contrast [7] 89.6

DGCNN + Jigsaw [41] 90.6
DGCNN + STRL [16] 90.9

DGCNN + Rotation [34] 90.8
DGCNN + OcCo [48] 89.2

DGCNN + CrossPoint [2] 91.2
DGCNN + PointCMC 92.2

RSCNN + GLR [39] 89.5
RSCNN + CrossPoint [2] 91.5

RSCNN + PointCMC 92.4

point cloud encoders and Swin Transformer[31] as the im-
age encoder. The intermediate representations of the point
cloud are shaped as {B,C,N1}, where B denotes the batch
size, C represents the feature dimension, and N1 repre-
sents the number of point groups. Similarly, the interme-
diate image representations are structured as {B,C,N2},
where B,C have the same meaning as above, and N2 rep-
resents the number of image patches. These local represen-
tations are then fed into the L2L module, which includes 6-
layer intra-attention blocks, 6-layer co-attention blocks, 3-
layer merge-attention blocks, and a simple MLP-based FAB
module. We utilize the Adam optimizer with a decay rate
of 1 × 10−4 and a learning rate of 1 × 10−3. In addition,
we also apply the Cosine annealing[32] as the learning rate
scheduler and train the model for 100 epochs. After pre-
training, all downstream tasks are performed based on the
point cloud encoder Ep.

4.2. Downstream Tasks

Our method is evaluated extensively in three downstream
tasks, utilizing pre-trained point cloud encoders. These
tasks include 3D object classification, few-shot object clas-
sification, and 3D object part segmentation. Our approach’s
performance is evaluated using two key metrics, namely



Table 2: Linear classification results on the ScanOb-
jectNN dataset. PointCMC also surpasses existing works
in both DGCNN and RSCNN backbones. This shows that
our method is still efficient in the real-world dataset.

Method ScanObjectNN
DGCNN + Jigsaw [41] 59.5
DGCNN + OcCo [48] 78.3
DGCNN + STRL [16] 77.9

DGCNN + CrossPoint [2] 81.7
DGCNN + PointCMC 84.4

RSCNN + GLR [39] 80.3
RSCNN + CrossPoint [2] 84.6

RSCNN + PointCMC 85.1

overall classification accuracy (OA) and mean intersection
over union (mIoU).

Transfer to 3D object classification.We compare the
OA of our method with state-of-the-art methods on the
ModelNet40 (synthetic) and ScanObjectNN (real-world)
benchmarks. The ModelNet40 dataset includes 40 classes
with 12,331 3D CAD models, of which 9,843 are in the
training data splits and 2,468 are in the test data splits. The
ScanObjectNN dataset contains 2,880 objects in 15 classes,
extracted from real-world indoor scene scans, with 2,304
objects in the training data splits and 576 in the test data
splits. We sample 1,024 points per object and use DGCNN
and RSCNN backbones for classification. Following the
same setup as in previous work[2][48], we freeze the point
cloud encoder and train a simple SVM classifier on the
downstream task training data splits.

Our proposed method achieves state-of-the-art results on
both point cloud benchmark datasets, as demonstrated in
Table 1 for ModelNet40 and Table 2 for ScanObjectNN.
However, other methods may not be directly comparable to
ours due to differences in pre-training methods and the se-
lection of backbone networks. Despite this limitation, our
approach shows great performance in self-supervised con-
trastive learning.

Transfer to Few-shot object classification.To evaluate
the effectiveness of our method under the constraint of lim-
ited fine-tuning data, we conduct few-shot object classifica-
tion experiments on two benchmark datasets: ModelNet40
and ScanObjectNN. In few-shot classification, N represents
the number of classes, while K represents the number of
samples in each class. Following the settings in[2][48],
we compare our method with four configurations. The ex-
perimental results in Table 3 for ModelNet40 and Table 4
for ScanObjectNN demonstrate that our proposed approach
outperforms the previous state-of-the-art method in three
out of four settings for both DGCNN and RSCNN back-
bones. While our method does not achieve the highest rank
in some settings, the margin with the state-of-the-art method

is relatively small. This observation highlights that our ap-
proach can learn more generalized representations.

Table 3: Few-shot classification results on ModelNet40
dataset. We report the mean accuracy(%) and standard de-
viation(%) over ten runs on independent experiments.

Method 5 way 10 way
10 shot 20 shot 10 shot 20 shot

3D-GAN [51] 55.8±3.4 65.8±3.1 40.3±2.1 48.4±1.8
FoldingNet [61] 33.4±4.1 35.8±5.8 18.6±1.8 15.4±2.2
Latent-GAN [1] 41.6±5.3 46.2±6.2 32.9±2.9 25.5±3.2

3D-PointCapsNet [67] 42.3±5.5 53.0±5.9 38.0±4.5 27.2±4.7
PointNet++ [37] 65.4±2.8 68.6±2.2 46.6±1.5 50.0±2.3
PointCNN [26] 65.4±2.8 68.6±2.2 46.6±1.5 50.0±2.3
RSCNN [28] 65.4±8.9 68.6±7.0 46.6±4.8 50.0±7.2

DGCNN + Rand 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN + Jigsaw [41] 34.3±1.3 42.2±3.5 26.0±2.4 29.9±2.6
DGCNN + cTree [43] 60.0±2.8 65.7±2.6 48.5±1.8 53.0±1.3
DGCNN + OcCo [48] 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2

DGCNN + CrossPoint [2] 92.5±3.0 94.9±2.1 83.6±5.3 87.9±4.2
DGCNN + PointCMC 92.2±5.0 95.5±3.3 87.5±5.1 91.4±3.0

RSCNN + Rand 40.2±2.9 49.8±3.2 29.6±2.4 28.3±3.4
RSCNN + GLR [39] 91.5±4.9 94.7±3.6 86.6±4.0 88.9±4.5

RSCNN + CrossPoint [2] 93.9±4.2 95.6±4.0 89.8±4.1 92.5±3.6
RSCNN + PointCMC 93.5±5.1 95.8±3.4 90.2±4.3 92.9±3.3

Table 4: Few-shot classification results in ScanObjectNN
dataset. We report the mean accuracy(%) and standard de-
viation(%) over ten runs on independent experiments.

Method 5 way 10 way
10 shot 20 shot 10 shot 20 shot

DGCNN + Rand 62.0±5.6 67.8±5.1 37.8±4.3 41.8±2.4
DGCNN + Jigsaw [41] 65.2±3.8 72.2±2.7 45.6±3.1 48.2±2.8
DGCNN + cTree [43] 68.4±3.4 71.6±2.9 42.4±2.7 43.0±3.0
DGCNN + OcCo [48] 72.4±1.4 77.2±1.4 57.0±1.3 61.6±1.2

DGCNN + CrossPoint [2] 74.8±1.5 79.0±1.2 62.9±1.7 73.9±2.2
DGCNN + PointCMC 78.3±6.8 84.4±5.9 68.6±4.2 76.3±3.8

RSCNN + Rand 69.2±5.6 73.3±6.3 43.7±5.1 48.8±4.6
RSCNN + GLR [39] 77.2±7.2 83.4±5.7 65.2±4.9 72.0±4.4

RSCNN + CrossPoint [2] 83.5±6.7 88.3±4.3 78.8±4.3 79.6±3.8
RSCNN + PointCMC 84.0±5.7 88.4±4.8 78.4±4.1 80.2±3.6

Transfer to 3D Object part segmentation.We evalu-
ate our method on the ShapeNetPart[62] benchmark dataset
for 3D object part segmentation. The dataset consists of
16 classes, comprising 16,881 3D objects, each annotated
with 50 parts. Part segmentation requires classifying each
point, making it more challenging than classifying the en-
tire point cloud object as it involves capturing local patterns.
We use the DGCNN branch for pre-training on ShapeNet
and evaluate the effectiveness of our method using a sim-
ple segmentation head. The features of the three abstract
layers are labeled with the encoder and then concatenated
onto each point feature after forward propagating through
the DGCNN to predict the class of each point using a lin-
ear projection layer. In Table 5, we compare supervised
and unsupervised methods, showing that the unsupervised
DGCNN pre-trained by PointCMC performs 0.8% better
than the supervised DGCNN with random weight initializa-
tion, indicates that PointCMC provides better weight initial-
ization to the backbone. PointCMC outperforms the pre-



vious best method by 0.4%, indicating that its multi-scale
learning strategy enables the encoder to capture more fine-
grained features than other self-supervised methods. As
shown in Figure 5, PointCMC demonstrates superior per-
formance in segmenting certain intricate areas.

Table 5: Part Segmentation result on ShapeNetPart
dataset. ’mIoU’ denotes the mean intersection over union
across all object classes in the dataset. Compared with the
current supervised and self-supervised methods, PointCMC
can achieve the best performance.

Category Method mIoU(%)

Supervised

PointNet [35] 83.7

PointNet++ [37] 85.1

DGCNN [50] 85.1

Unsupervised

Self-Contrast [7] 82.3

Jigsaw [41] 85.3

OcCo [48] 85.0

PointContrast [56] 85.1

Liu et al. [27] 85.3

CrossPoint [2] 85.5

PointCMC 85.9

4.3. Ablation study

We conduct ablation studies on DGCNN and RSCNN to
demonstrate the effectiveness of our training strategy. Our
evaluation is performed from two perspectives: (1) the im-
pact of modules, and (2) the impact of the number of corre-
sponding 2D images.

Impact of modules. We establish multi-scale cross-
modal correspondences by mapping them to the same fea-
ture space, equal to creating positive samples in contrastive
learning. We hypothesize that enhancing multi-scale cross-
modal correspondences can facilitate cross-modal transfer
more effectively than single-scale correspondences. To
verify our hypothesis, we train networks with single-scale
correspondences and evaluate their classification perfor-
mance using a linear SVM classifier on the ModelNet40 and
ScanObjectNN datasets. Our multi-scale network increases
the overall accuracy by 0.9% and 1% over the second-best
approach on ModelNet40 using DGCNN and RSCNN fea-
ture extractors, respectively (Table 6). The L2L-only mod-
ule network exhibits the best classification results, possibly
because embedding local features of the images near the
point cloud features promotes fine-grained semantic trans-
formation. We visualize the T-SNE[46] plots of the abla-
tion experiments on the ModelNet10 test splits in Figure

Table 6: Linear classification results on ModelNet40 with
different modules, where A denotes the DGCNN feature
extractor and B denotes the RSCNN feature extractor. Our
results indicate that the multi-scale network outperforms the
single-scale network in both backbones. Note that all other
experimental settings remain consistent across different ab-
lation studies.

Backbones L2L LCLGC LCGC accuracy(%)

A ✓ 91.3

A ✓ 89.5

A ✓ 90.6

A ✓ ✓ ✓ 92.2

B ✓ 91.4

B ✓ 89.9

B ✓ 90.8

B ✓ ✓ ✓ 92.4

Table 7: Linear classification results on ModelNet40
with different attention blocks, where A represents the
DGCNN feature extractor and B represents the RSCNN fea-
ture extractor. In both backbones, the network within intra-
and inter-attention blocks outperforms the single-block net-
work.

Backbones intra inter accuracy(%)

A ✓ 91.5

A ✓ 91.9

A ✓ ✓ 92.2

B ✓ 91.5

B ✓ 92.0

B ✓ ✓ 92.4

4, which reveal that multi-scale networks better distinguish
categories with indistinct boundaries, such as tables and
chairs, compared to single-scale networks.

Furthermore, we investigate the impact of each block
within the L2L module on our approach. Specifically, we
explore the effects of the intra-attention and inter-attention
blocks. Our results, presented in Table 7, demonstrate that
employing only the intra-attention block results in lower
linear classification accuracy than using only the inter-
attention block. However, combining both blocks achieves
the highest classification accuracy. Additionally, we evalu-
ate the effects of the co-attention and merge-attention mech-
anisms (Table 8). The results show that employing only the
merge-attention mechanism leads to lower linear classifica-



(a) L2L Only (b) CLGC Only (c) CGC Only (d) Multi-scale

Figure 4: T-SNE [46] visualization on the ModelNet10 test dataset. We show the feature distribution extracted by different
module networks: (a) L2L-only network; (b) CLGC-only network; (c) CGC-only network; and (d) Multi-scale network. Our
proposed Multi-scale network can better distinguish between different classes than single-scale networks.

(a) Self-Contrast (b) OcCo (c) CrossPoint (d) PointCMC (e) GT

Figure 5: Visualization of part segmentation results. We visualize the part segmentation results from (a) Self-Contrast; (b)
OcCo; (c) CrossPoint; (d) PointCMC; and (e) Ground-Truth(GT).

tion accuracy than using only the co-attention mechanism.
Nevertheless, the highest classification accuracy is achieved
when both mechanisms are jointly employed. These find-
ings indicate that appropriately suppressing unimodal inter-
action and enhancing intermodal interaction can facilitate
knowledge transfer.

Impact of images.We investigate the effect of the num-
ber of rendered images on our network by randomly se-
lecting n images from different viewpoints and computing
the average of their features for loss calculation. Table X

shows the network’s results with different numbers of im-
ages on the linear SVM classifier. Our findings suggest that
the backbone achieves the best result when using only one
image as input. We attribute the decrease in classification
accuracy to the redundant information captured from multi-
ple rendered images of the same object in the image modal-
ity.



Table 8: Linear classification results on ModelNet40 with
different attention mechanisms, where A represents the
DGCNN feature extractor and B represents the RSCNN fea-
ture extractor.

Backbones co-att merge-att accuracy(%)

A ✓ 92.0

A ✓ 91.7

A ✓ ✓ 92.2

B ✓ 92.1

B ✓ 91.9

B ✓ ✓ 92.4

Table 9: Linear classification results on ModelNet40 with
different numbers of rendered images. PointCMC per-
forms better with one rendered image than with multiple
rendered images. We choose one image for all experiences.

Numbers of rendered
images

1 2 3 4 5

Linear accuracy(%) 92.2 92.1 91.8 91.8 91.5

5. Conclusion

In this paper, we propose PointCMC, a novel self-
supervised training strategy for point cloud representa-
tion learning. Our downstream experiments demonstrate
that enforcing cross-modal correspondences improves point
cloud representations. We also validate our hypothesis that
multi-scale correspondences enable the model to achieve
the best performance through our ablation experiments. In
future works, it would be interesting to investigate transfer-
ring the learned image knowledge to more efficient models
and applying our method to point cloud-based tasks such
as segmentation and detection. Moreover, leveraging point
cloud geometric knowledge as auxiliary inputs for image
learning is a promising direction for future research.
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